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Abstract

The forced convection heat transfer characteristics in high porosity open-cell metal-foam filled tube heat exchangers are analysed in
this paper. The Brinkman-extended Darcy momentum model and two-equation heat transfer model for porous media are employed for
the analysis of the heat transfer performance. The morphological effects of metal foams on overall heat transfer are examined. The opti-
mal foam-area ratio for a metal-foam filled counter-flow tube-in-tube heat exchanger is predicted. The study shows that the thermal per-
formance of a metal-foam heat exchanger can be superior to that of conventional finned tube heat exchangers.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the use of high porosity metal foams have
spread to include applications, such as aircraft wing struc-
tures for the aerospace industry, catalytic surfaces for
chemical reactions, core structures for high strength pan-
els, and containment matrices and burn rate enhancers
for solid propellants [1,2]. Due to the high surface-area
density and strong mixing capability for the fluid, open-
cell metal foams are now regarded as one of the most
promising materials for the manufacture of efficient com-
pact heat exchangers.

In principle, high porosity metal foams with open cells
can be treated as porous media. For metal-foam filled tube
heat exchangers the Brinkman-extended Darcy model [3]
and two-equation non-equilibrium heat transfer model [4]
can be employed as the momentum and energy equations,
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respectively. The two-equation non-equilibrium heat trans-
fer model treats the solid ligaments of metal foams and the
fluid separately.

When the difference in the thermal conductivities of the
fluid and solid is significant, as is the case in this study, the
temperature difference between local fluid and solid phases
cannot be neglected, Calmidi and Mahajan [5]. In these sit-
uations the two-equation non-equilibrium heat transfer
model should be employed for the analysis of the heat
transfer performance in metal-foam filled tube heat
exchangers [6].

Even though from the heat transfer point of view metal
foams can be considered as a type of porous media, they
have very distinctive features such as high porosities and a
unique open-cell morphology that need special treatment.
A number of investigations on the thermal transport of high
porosity open-cell metal foams have been carried out during
the last fifteen years. Calmidi and Mahajan [5] and Zhao
et al. [7] conducted experimental and numerical studies
for air-cooled forced convection in metal-foam filled plate
channels. Heat transfer measurements on compressed alu-
minium-foam heat exchanger arrays have been performed
by Boomsma et al. [8] to evaluate their performance in
industrial applications. Aluminium foams for duct heat
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Nomenclature

ã surface area density (m�1)
A surface area (m2)
Da Darcy number, K/R2

DH hydraulic diameter (m)
h heat-transfer coefficient (W/m2 K)
hsf interfacial heat-transfer coefficient of metal

foams (W/m2 K)
H depth of the fins or grooves (m)
k thermal conductivity (W/m K)
ke effective thermal conductivity
K permeability (m2)
Nu Nusselt number, hDH/kf

Nusf local Nusselt number, hsfdp/kf

Pr Prandtl number, cplf/k
p pressure (Pa)
P dimensionless pressure
qw heat flux (W/m2)
Q heat (J)
R inner radius of the inner tube (m)
R1 outer radius of the inner tube (m)
R2 inner radius of the outer tube (m)
Re Reynolds number, 2uR/t
S pitch of spiral groove (m)

t thickness (m)
T temperature (K)
u velocity along z-direction (m/s)
um mean velocity along z-direction (m/s)
U dimensionless velocity along z-direction, u/um

Ui overall heat-transfer coefficient based on the
inside area of the inner tube (W/m2 K)

Greek symbols

e porosity
h dimensionless temperature, T�T w

qwR=kseP
sum

q density (kg/m3)
lf dynamic viscosity (kg/m s)
t kinematic viscosity (m2/s)
w dimensionless radial coordinate, r/R1

Subscripts
s solid
f fluid
w wall
i inside of inner tube
o outside of inner tube

ω

r z

Inner section

Outer section
L

R1
R

R2

r

z

ω

Flow direction

Fig. 1. A schematic diagram of a tube-in-tube heat exchanger filled with
metal foam.

C.Y. Zhao et al. / International Journal of Heat and Mass Transfer 49 (2006) 2762–2770 2763
exchangers have also been investigated by Tadrist et al. [9].
Both studies showed that aluminium foams can enhance the
heat transfer capability of the heat exchangers. In addition,
Boomsma et al. [8] studied the required coolant pumping
power against thermal resistance and demonstrated that
foams can have significantly higher efficiencies over several
conventional heat exchangers.

The heat transfer performance of metal-foam filled pipe
was discussed in Part I of this paper. In this second part,
the heat transfer performance of metal-foam filled tube-
in-tube heat exchanger is analysed. The effects of different
parameters (such as pore size, porosity, geometrical size,
etc.) on the heat transfer and fluid flow performance of
metal-foam tube heat exchangers is discussed. Further-
more, the overall performance of a metal-foam filled tube
heat exchanger is compared with that of a conventional
finned tube heat exchanger.

2. Physical problem

The problem under consideration in this paper is the
analysis of the thermal performance of a counter-flow
tube-in-tube heat exchanger as shown in Fig. 1. The heat
exchanger comprises of two concentric pipes forming an
inner section and an outer annular section, both filled with
metal foams. Fluid flows axially through both sections in a
counter-flow arrangement. The outer pipe is assumed to be
perfectly insulated so there is no heat transfer between the
pipe’s outer surface area and the surroundings. The heat
flux through the wall of the inner pipe is assumed to be
constant so the thermal boundary conditions of the inner
surface of the outer section can be assumed to constant
heat flux. The solution for the inner pipe was presented
in Part I of this paper. The solution for the outer pipe is
presented in the following sections.
3. Mathematical formulation and analytical solution

3.1. Mathematical formulation and normalisation

As mentioned earlier, the Brinkman extended Darcy
momentum model [3] and the two-equation non-equilib-
rium heat transfer model proposed by Calmidi and Maha-
jan [5] are employed in the analysis for both the fluid and
solid. For fully developed flow, these equations can be sim-
plified to one-dimensional differential equations as follows:



2764 C.Y. Zhao et al. / International Journal of Heat and Mass Transfer 49 (2006) 2762–2770
• Momentum equation
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For the inner section (as shown in Fig. 1), the boundary
conditions are

When r ¼ R; u ¼ 0; T s ¼ T f ¼ T w ð4Þ

When r ¼ 0;
ou
or
¼ oT f

or
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or
¼ 0 ð5Þ

For the outer section, when constant heat flux is
imposed on the interface between the inner pipe wall and
metal-foam and the outer boundary is insulated, the
boundary conditions are

When r ¼ R1; u ¼ 0; T s ¼ T f ¼ T w ð6Þ
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The details of solving the equations for the inner section
are described in the companion paper I. The solution of
the equations for the outer section is given below, to
non-dimensionalise the equations the following variables
are employed:

Da ¼ K=R2
1; w ¼ r=R1; P ¼ K

lf u
dp
dz
;

h ¼ T � T w

qwR1=kse

; hs ¼
hT is � hT iw
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;
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qwR1=kse
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1=kse;

C ¼ kfe

kse

; U ¼ u
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ð8Þ

where u and um are the local and mean velocities along the
axial direction, respectively.

The equations for outer section can be normalised as
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3.2. Analytical solution of the equations

The above equations can be treated as equations in the

form of o2Y
oz2 þ 1

z
oY
oz � Y ¼ 0 and o2Y

oz2 þ 1
z

oY
oz ¼ C. The latter is

easy to solve. The standard solutions of the former, J0(z)
and Y0(z) are given in Appendix A. Based on this, Eqs.
(9)–(11) can be analytically solved subject to boundary
conditions (12) and (13).

• The dimensionless velocity distribution
The velocity distribution can be obtained by solving

momentum equation (9), as

U ¼ P N 1 � J 0
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since 1
A

R
A U dA ¼ 1, solving for P the following is obtained:
• The dimensionless temperature distribution
After the velocity distribution is determined, the temper-

ature profile can be obtained by solving Eqs. (10) and (11).
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Fig. 2. Dimensionless velocity distribution in a metal-foam tube-in-tube
heat exchanger.
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• Overall Nusselt number

For the inner surface of the outer section, the overall
heat transfer coefficient �ho is
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where DH = 2(R2 � R1) and hf,bo is the dimensionless bulk-
mean fluid temperature averaged over the cross-section of
the outer channel. Then,
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The solutions for the inner section obtained in the compan-
ion paper (Part I), are given below:

• The velocity solution
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• The solid and fluid temperature solutions
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• Overall heat transfer coefficient

hi ¼
qw

T wi � T f ;bi

¼ � kse
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In the solution for the inner section, R is used as the length
scale.

4. Results and discussion

4.1. Dimensionless velocity and temperature distributions

Figs. 2 and 3 show the predicted dimensionless velocity
and temperature distributions, respectively, in the inner
and outer tubes of the metal-foam filled tube heat exchanger.
The curves in the centre part of the diagrams represent the
distributions in the inner tube, and the curves at two ends
represent the distributions in the outer tube. As can be seen
from Fig. 2, the shape of the dimensionless velocity distribu-
tion in the outer tube is similar to that in the inner tube, with
the velocity increasing from zero at the boundary (tube wall)
to its maximum value in the centre of the passage.

In the equation of the dimensionless temperature,

h ¼ T�T w

qwR1=kse
, qw is positive when the fluid absorbs heat from

the wall and negative when the fluid transfers heat to the
wall. As expected, Fig. 3 shows that the temperatures of
the fluid and solid are the same on the boundary wall. In
the inner tube, the fluid temperature reduces from maxi-
mum in the centre to minimum on the pipe wall. The tem-
perature variation in the foam, although of similar trend, is
much more gradual than the temperature variation in the
fluid. Unlike the dimensionless temperature distribution
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in the inner tube, the dimensionless solid (foam) tempera-
ture in the outer tube decreases from the inner wall to reach
minimum value on insulated wall. The dimensionless fluid
temperature first decreases from the inner wall to a mini-
mum at the centre of the passage and then increases slightly
towards the outer wall. Fig. 2 also shows that increasing
the pore density improves the velocity distribution and
reduces the temperature difference between the solid and
fluid (Fig. 3).

4.2. Heat transfer performance in metal-foam filled

compact heat exchanger

4.2.1. Heat transfer in outer annular channel

To apply this analytical solution to the metal-foam filled
tube heat exchanger, the fluid flow and heat transfer
through the metal-foam filled annular channel (outer tube)
is analysed (the heat transfer performance of the inner tube
was discussed in the companion paper, Part I). Figs. 4 and
5 show the heat transfer performance for air flow in the
outer tube filled with different metal foams. Similar to the
results for the inner tube (Part I), Fig. 4 shows that decreas-
ing either the porosity or pore size leads to an increase in
the heat transfer performance. It is also shown in Fig. 5
that increasing the solid thermal conductivity or fluid
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velocity can enhance heat transfer performance. The effect
of fluid velocity is greater for higher thermal conductivity
foams.

4.2.2. Overall heat transfer coefficient for metal-foam heat

exchangers

The overall heat transfer in a metal-foam filled tube-in-
tube heat exchanger can be expressed as

Q ¼ U iAiðT A � T BÞ ð25Þ
where U i ¼ 1

1
hi
þR�lnðR1=RÞ

ks
þ R

R1ho

[10], Ai = 2pRL, TA and TB are

the fluid temperatures, and hi and ho are the inside and out-
side convection heat-transfer coefficients for, respectively.
To analyze the effect of the flow cross-sectional area ratio
ðpR2=ðpR2

2 � pR2
1ÞÞ on the overall heat transfer coeffi-

cient, the radius of the outer tube (R2) was set at 10 mm
and the wall thickness of the inner tube (R1 � R) at
0.5 mm. The flow cross-sectional area ratio would therefore
vary only with the radius of the inner tube (R). The results
are shown in Fig. 6. It can be seen that as the inner tube
diameter increases, the cross-sectional area of the inner
tube increases and the area of outer channel decreases. This
causes an increase in the inside heat transfer coefficient (hi)
and a decrease in the outside heat-transfer coefficient (ho).
As a consequence, the overall heat-transfer coefficient for
the heat exchanger (Ui) first increases with increasing hi

to a maximum value at R = 0.004 m, and then gradually
decreases.
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Fig. 7 shows the effect of porosity on the overall heat
transfer coefficient of the heat exchanger for air velocity
through the tubes of 10 m/s. It can be seen that as the
porosity increases the overall heat transfer coefficient
reduces. Fig. 7 also shows that the overall heat transfer
coefficient increases with increase of thermal conductivity,
copper exhibits a higher overall heat transfer coefficient
than steel, but this increase diminishes as porosity
approaches unity. The effect of pore density and flow veloc-
ity on the performance of the heat exchanger is shown in
Fig. 8. It can be seen that for a constant porosity of 0.9,
increasing either the flow velocity or the pore density will
lead to an increase in the overall heat transfer coefficient.

4.2.3. Parametric analysis of heat exchanger

From Eq. (25), the overall heat transfer in the heat
exchanger can be quantified as Q = UiAi(TA � TB) =
UiAiDT. If q represents heat transfer per unit length i.e.
q = Q/L, then q = Ui2RDT and the heat-transfer capacity
of the heat exchanger per unit length becomes q/DT = Ui2R.

Figs. 9 and 10 show the effect of the diameter of the
inner tube on the overall heat exchanger thermal perfor-
mance for air velocity of 10 m/s on both sides. It can be
seen that the heat-transfer capacity of the metal-foam filled
heat exchanger examined reached maximum at R = 0.65
which represents a foam area ratio close to 1.0. It can also
be seen that the heat transfer performance of a plain tube
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Fig. 8. Variation of overall heat-transfer coefficient of heat exchanger
with fluid velocity.
heat exchanger is much lower than that of a foam filled
heat exchanger and for a foam heat exchanger increasing
the pore density leads to an increase in heat transfer perfor-
mance. Increasing the porosity will cause a reduction in
heat transfer performance (Fig. 10).

Fig. 11 shows the influence of the pore density on the
optimal inner tube diameter for maximum heat transfer. It
can be seen that, with the pore density of the outer tube con-
stant at 20 ppi, increasing the inner tube pore density from
10 ppi to 60 ppi, reduces the optimum inner tube radius
from R = 7.5 mm to R = 5 mm. It can therefore be con-
cluded that the optimum inner tube diameter or flow
cross-sectional area ratio varies with the relative pore densi-
ties of the metal foams filled on both sides of heat exchanger.
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Fig. 12. Geometry of conventional finned tube heat exchanger (R = 6 mm, R1 = 6.5 mm, R2 = 10 mm). (a) The heat exchanger with inner grooved tube
(spiral grooves: s = 0.1 mm, H = 1 mm) and fins (longitudinal fins: 20 fins, H = 2.5 mm, t = 0.075 mm), (b) metal-foam filled heat exchanger.
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Fig. 13. The effect of velocity on heat transfer performance: metal foams
(e = 0.9) versus longitudinal fins (fin depth = 2.5 mm).

Surface area density (1/m)

0

20

40

60

80

100

120

140

160

180

200

8 10 12 14 16 18 20
Superficial velocity (m/s)

q
/Δ

T
 (

W
/m

K
)

6650 (50 ppi)

4070 (30 ppi)

2770 (20 ppi)

1480 (10 ppi)

6970 fins

4010 fins

2660 fins

1740 fins
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4.2.4. Comparison with conventional finned tube heat

exchangers

Fig. 12 shows the configuration of a conventional finned
tube heat exchanger (a) and a metal-foam filled tube-in-tube
heat exchanger (b). For the conventional heat exchanger an
inner grooved tube is assumed with fins on its external sur-
face to improve heat transfer. For comparison purposes the
two heat exchangers are made of copper and air is used as
the working fluid on both sides. To widen the range of com-
parison, both spiral and longitudinal fins of and different fin
densities were considered.

To calculate the heat transfer rate of the conventional
compact heat exchanger, the following empirical correla-
tions were employed:

For smooth tubes [10]:

hi ¼
k
d i

0:023Re0:8
d Pr0:3 ð26Þ

For spiral groove tubes [11]:

hi ¼
k
d i

0:363Re0:6
d Pr0:3ðH=d iÞ0:103ðS=d iÞ�0:29 ð27Þ

The fin efficiency is determined from [10]

g ¼ tanhðmHÞ
mH

¼
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ho=ðktÞ

p
H

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ho=ðktÞ

p ð28Þ

where H is the depth of the fins or grooves, S is the pitch of
the spiral grooves and, t, is the fin thickness.

Figs. 13 and 14 show comparisons between the metal-
foam filled annular channel and the finned channels. Lon-
gitudinal fins were assumed for Fig. 13, and spiral fins for
Fig. 14. Both charts show that the use of metal foams can
significantly improve the heat transfer performance due to
the enlarged surface area density and strong mixing of fluid
flow in metal foams. For the same area density the perfor-
mance of the foam filled annular tube is approximately
three times higher than the performance of the longitudi-
nally finned tube. Using spiral instead of longitudinal fins
improves the performance of the conventional heat exchan-
ger (Fig. 14) but this is still much inferior to the perfor-
mance of the metal-foam filled annular channel.

Fig. 15 shows a comparison between conventional
and metal-foam filled (both core and annular sections)
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tube-in-tube heat exchangers. It can be seen that the overall
heat transfer coefficient of the metal-foam filled heat
exchanger is significantly higher than that of conventional
finned tube heat exchangers. For example, the overall heat
transfer coefficient of a 10 ppi copper-foam filled heat
exchanger is shown to be more than double that of a finned
tube heat exchanger (spiral fins 5000 fins/m, H = 1 mm, t =
0.075 mm and inner tube grooves S = 0.1 mm, H = 1 mm).
Therefore, it is clear that the use of metal foams can greatly
enhance the heat transfer, and metal foams have significant
potential in the manufacture of compact heat exchangers.
5. Conclusion

In this work, the heat transfer performance of a metal-
foam filled tube heat exchanger has been analysed by using
the Brinkman-extended Darcy momentum model and the
two-equation heat transfer model for porous media. Ana-
lytical solutions for temperature and velocity distributions
have been obtained for both the inner and outer tubes of a
tube-in-tube heat exchanger. It is shown that the heat
transfer capacity of the metal-foam filled tube heat exchan-
ger increases with either the increase of pore density (ppi)
or the decrease of porosity. The use of metal foams can sig-
nificantly enhance the heat transfer performance of tube-
in-tube heat exchangers compared to that of conventional
finned tube heat exchangers due to the high surface area
density and strong flow mixing. The results also showed
that the heat transfer performance of metal-foam filled
tube-in-tube heat exchangers is a function of the ratio of
the flow cross-sectional area and relative pore densities of
the metal foams filled on both sides of heat exchanger.
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Appendix A. General solutions of the partial differential
equation

For the differential equation of form of

z2 � o
2Y
oz
þ z � pðzÞ � oY

oz
þ qðzÞ � Y ¼ 0 ðA:1Þ

which is one of the classical functions of mathematical
physics [12]. One solution of this equation is: f ðzÞ ¼
zl
P1

n¼0cnzn. Assuming p(z) = 1 and q(z) = �z2, dividing
both sides by z2 and simplifying, Eq. (A.1) takes the form

o2Y
oz
þ 1

z
oY
oz
� Y ¼ 0 ðA:2Þ

which should be solved in this paper.
Based on the solution of (A.1) the solution of (A.2) is

J 0ðzÞ ¼
X1
n¼0

1

ðnþ vÞ!n!

1

2
z

� �2n

ðA:3Þ

A second solution of Eq. (A.1) is

f ðzÞ ¼ C � J 0ðzÞ lnðzÞ þ zl2

X1
n¼0

dnðzÞ � zn

Applying this to Eq. (A.2) we get

Y 0ðzÞ ¼ J 0ðzÞ ln
1

2
z

� �
þ
X1
n¼0

F n

ðnþ 1Þ!ðnþ 1Þ!ðnþ 1Þ
1

2
z

� �2nþ2

ðA:4Þ
where F n ¼ nþ1

n F n�1 � 1 and F0 = �1.
Therefore, the J0(z) and Y0(z) are two solutions for

Eq. (A.2).
For J 1ðzÞ ¼ J 00ðzÞ, and Y 1ðzÞ ¼ Y 00ðzÞ, J1(z) and Y1(z) can

be determined as

J 1ðzÞ ¼
1

2
z

� �X1
n¼0

1

ðnþ vÞ!n!

1

2
z

� �2n

ðA:5Þ

Y 1ðzÞ ¼ J 1ðzÞ ln
1

2
z

� �
þ 1

2

X1
n¼0

1

n!n!

1

2
z

� �2n�1

þ 1

2

X1
n¼0

F n

ðnþ 1Þ!ðnþ 1Þ!
1

2
z

� �2n

ðA:6Þ

Accordingly, the form of the solutions, (z Æ J1(z)) 0 =
z Æ J0(z) and (z Æ Y1(z)) 0 = z Æ Y0(z) can be obtained.
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